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Abstract 

Satellite communication currently involves the use of expensive hardware and 

proprietary protocols. The Internet Protocol envisages cost-effective solutions and 

ever-improving mechanisms and provides an ideal medium for communication in 

space. The Space Based Internet Emulation System seeks to design and evaluate the 

provisioning of IP in satellite communications in controlled hardware emulation 

scenarios. The architecture and design of the emulation system are explored. A 

central controlling and node status monitoring emulation manager is constructed and 

the design of a centralized routing and scheduling entity are examined. The problem 

of data routing in an Earth-orbiting satellite system is analyzed and avenues explored 

to address it. The system is tested and evaluated with various scenarios. 
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1 Introduction 

Ever since the first satellite was launched into space in 1957, satellites have been used 

for a variety of missions including Earth-observation, military applications and 

communications. Currently, it is estimated that there are around 8000 active satellites 

in Earth orbit with plans to launch many more afoot. This promises a vast potentially 

untapped resource for communication purposes. If each satellite in Earth orbit were 

made capable of generating, terminating and switching traffic, this would lead to an 

immense increase in capacity for communications on Earth. A lot of research is 

currently in progress on using satellites as a low cost, high bandwidth channel for 

communications. 

1.1 Earth Orbiting Satellites 

Satellite orbits conducive for communication purposes can be broadly classified into 

three categories: 

�� Geosynchronous Satellites (GEO) 

�� Medium Earth Orbit Satellites (MEO) 

�� Low Earth Orbit Satellites (LEO) 

1.1.1 Geosynchronous Satellites 

Geosynchronous Orbit (GEO) satellites are found at an altitude of about 22400 miles 

(36000 Km). GEO satellites have an orbit period equal to the rotation period of the 

Earth. Geostationary satellites are GEO satellites with zero eccentricity and zero 

inclination, i.e., they orbit the Earth over the equator. GEO satellite systems offer 

maximum coverage of the Earth area with a minimum number of satellites. Three 

GEO satellites can provide coverage over the whole Earth. For these reasons, GEO 
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satellites are mainly used for data broadcast purposes. However, the round trip time is 

about 250 ms and they typically have a very high bit error rate.  

1.1.2 Medium Earth Orbit Satellites 

Medium Earth Orbit (MEO) Satellites are found at altitudes ranging from a few 

hundred to a few thousand miles (1000 Km to 10000 Km.). MEO Satellites typically 

have lower error rates and lower path delay. 

1.1.3 Low Earth Orbit Satellites 

Low Earth Orbit (LEO) Satellites are found at altitudes ranging from 200 to 600 miles 

(300 Km to 1000 Km). They have low path delay and low bit error rates. A large 

number of LEO satellites, however, will be required for total Earth coverage due to 

their low altitudes. Majority of the Earth Observation Satellites are launched into 

LEO orbits due to the high resolution possible for the Earth’s surface. These satellites 

orbit the Earth once every 90 minutes approximately. Thus, LEO satellites form the 

best bet for low cost, low delay and high data rate communication networks. 

1.2 Networking in Space 

The first use of satellites for communication used the bent-pipe relay method where 

satellites in Geosynchronous Orbit were used to receive data from a terrestrial source 

and then broadcast it over a large area. This is mainly due to the large footprint for 

GEO satellites that enable them to access a large part of the Earth’s surface. Satellites 

in Low-Earth Orbit are used for Earth-Observation purposes due to the high-

resolution capability at these altitudes. This requires the use of high data-rate, high-

capacity recorders to record the data input over the observation area and output the 

data once the satellites come in view of a controlling ground station. This brings an 

unpleasant latency into picture, leading to delays in analyzing critical data. In recent 
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times, satellite constellations at the LEO level have been envisaged and put into 

practice to create a satellite network in space to avoid this latency. These networks 

suffer from the disadvantage of being locked into a proprietary, high-cost 

communications service. Using a widely preferred protocol such as the Internet 

Protocol for satellite networking would be highly advantageous in terms of reducing 

costs and satellite specific communication equipment and creating the potential for 

evolving with technology [1]. A huge amount of research is currently ongoing on the 

potential of using IP and related protocols in an Earth orbiting satellite network [2]. 

Currently, a number of satellite constellations are in LEO and MEO orbits and take 

part in a communications network, the most notable being Teledesic, GlobalStar, 

Iridium and many more still being envisioned. 

In Geosynchronous orbit, the Tracking and Data Relay Satellite System (TDRSS) [3] 

employs seven data relay satellites intended for use for relaying data for the Space 

Shuttle, the International Space Station and numerous Earth Observation Satellites. 

1.3 Space Based Internetwork 

Currently, Earth Observation satellites perform a variety of tasks ranging from a 

constant low-bandwidth observation of solar wind intensity to bursty, high capacity 

image captures of specific areas on the Earth’s surface. This necessitates the use of 

high data rate, high capacity onboard data recorders for data storage. The data is then 

downloaded when the satellite passes over the intended ground station. The links 

between satellites and ground stations require complex expensive hardware and the 

use of custom protocols for downloading the data. A “single mission” observation 

satellite is thus only concerned with its acquisition schedule and its downlink 

schedule. 

Using a standardized network protocol like the Internet Protocol (IP) can facilitate the 

use of low-cost hardware used in ground based networking onto satellites. In addition, 
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recent rapid technological advances in IP show great potential for the future of high-

speed networking and this bodes well for satellite networking. Satellites that now 

have to store data until they reach Line-of-Sight with the ground station before they 

can download it can relay via other satellites to the ground station as the data is being 

picked up. If a number of satellites in Earth orbit are capable of relaying data, this can 

develop an internetwork of satellites in space leading to the concept of a Space Based 

Internet (SBI) [4]. 

Coordinated data collection among satellites is possible once communication between 

satellites is accomplished. This is especially useful for data gathering for unique 

events and can provide multiple perspectives on events. This can create the potential 

for “joint missions” in the future across multiple platforms and programs. 

The system becomes scalable very quickly as more and more satellites are launched 

into space. Satellites that can accomplish the tasks of data gathering as well as data 

relay can be launched at lowered costs with the use of standard SBI modules. In 

addition, specialized relay satellites can be launched to provide extended bandwidth 

capacity and capabilities for the internetwork. 

The use of satellite specific communication systems can be eliminated and low cost, 

high performance hardware can be incorporated onboard observation satellites to 

enable data relay in space. 

This can soon evolve into an extension of the terrestrial Internet and provide a new 

high-bandwidth solution for personal communications. This may be the first step for 

the start of a new era of Inter-Planetary Internet [5]. 

1.4 Need for an Emulation System 

Experiments in the real world entail the use of expensive hardware. Building satellites 

and launching them for purposes of testing the feasibility of a satellite network can 

lead to high costs being involved, in terms of both time and money. Software built for 
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SBI would have to be loaded onto the satellites and tested in space. This leads to a 

very low repeatability factor and designing a scalable prototype turns out to be very 

expensive. 

A software simulation, on the other hand, though simple, has many disadvantages; it 

does not work in real time and it does not incorporate the intricacies of the real world 

system. These detract from the effectiveness of a simulation system, though they are 

relatively easier and cheaper to build.  

An emulation system effectively overcomes the deficiencies of a simulation while 

avoiding the high costs and overhead involved with the real world. An emulation 

system incorporates real world software on hardware that emulates the intricacies of 

the actual system. By emulating the environment of space on computer hardware, the 

costs of building a prototype system reduce considerably. Software that can be used 

on the emulation system can be used in the real world with minimum changes. Tests 

can be executed in real time to gauge the effectiveness and robustness of the system. 

An emulation system provides a high degree of scalability and repeatability and can 

be implemented in a relatively short time. Therefore, an emulation system is a very 

good choice for developing the architecture for a Space Based Internet. 

1.5 Thesis Organization 

This thesis explores the architecture and design details of the Space Based Internet 

Emulation System. A prototype emulation system is proposed, implemented and 

evaluated. 

The acronym ‘SBI’ is henceforth used in this document to denote the SBI Emulation 

System being developed. 

In Chapter two, the objectives of the SBI Emulation System are enumerated and a 

design is proposed for the architecture according to the requirements of the system. 
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Chapter three explores the design and implementation details of the Emulation 

Manager, which controls and monitors the entire SBI system. 

The architecture and implementation of a centralized Operations Node is described in 

Chapter four. 

Chapter five looks into the problem of routing in a space based internet. The design of 

a simple centralized topology generation algorithm is explained in this chapter. 

Chapter six validates the performance of the SBI Emulation System. Test scenarios 

are described and the results are evaluated. 

Chapter seven concludes the thesis and presents the scope for future work on related 

topics. 
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2 Space Based Internet Emulation System 

This chapter provides an overview of the SBI Emulation System. The objectives of 

the system are discussed, the requirements mentioned and the architecture for the SBI 

emulation system is developed. A brief explanation is given on the components of the 

architecture. 

2.1 SBI Objectives 

The Space Based Internet Emulation System seeks to fulfill the following objectives. 

�� Provide internetworking between satellites for coordinated and continuous data 

collection: The primary objective for an SBI is to ensure continuous data 

collection and an uninterrupted data flow through the network. This emulation 

system seeks to figure out satellite network topologies for maximum 

uninterrupted coverage of the Earth. 

�� Emulate the space communication environment characteristics in hardware: This 

involves implementing innovative algorithms for emulating the latency and bit 

error rate characteristics of space communication links. 

�� Prototype the SBI node software required for a SBI: The node software developed 

for the SBI emulation system should be possible to be used in the real world with 

minimum changes. This software should include topology generation and data 

scheduling algorithms. 

�� Develop innovative topology generation algorithms for routing in a SBI: The 

space satellite network requires the use of dynamic routing algorithms for the 

purpose of routing data. A number of constraints are imposed on a satellite 

network. These constraints need to be addressed and solutions proposed for 

overcoming them. 
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�� Implement traffic models for space based applications: Earth Observation 

Satellites perform a variety of data gathering functions. By developing realistic 

traffic models for the satellite data, the performance of the SBI emulation system 

can be accurately gauged. 

2.2 SBI Requirements 

The following requirements are addressed in the architecture of the SBI Emulation 

System. 

1. The SBI Emulation System shall have a central controller managing the 

emulation. 

2. The emulation shall consider satellites in Earth orbit as well as ground stations 

in the network. 

3. Satellite orbits shall be considered up to and including geo-stationary orbits. 

4. Satellite link communication characteristics like high delay and high bit error 

rates shall be emulated in the system. However, effects of interference by any 

other source including the Van Allen Belts shall not be taken into 

consideration. 

5. Traffic models for satellite instruments shall be generated and used in the 

emulation. 

6. Algorithms for routing data in the network shall be developed. 

7. A centralized model shall be developed for the network, wherein a central 

server generates the routes for the network and the instrument scheduling data 

and transfer this onto the SBI nodes. 
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8. Enhancement of the software in the future is a possibility. Therefore, a 

modular form of programming shall be used for the Operations Node, so that 

replacing entire portions of algorithms with others shall be easily 

accomplished. 

2.3 Space Based Internet Emulation Features 

This section describes the general characteristics associated with the proposed Space 

Based Internet System. The different types of nodes and the types of networks in the 

SBI system are discussed. 

2.3.1 SBI Nodes 

The SBI Nodes are classified into three broad categories: 

�� Data Source and Relay Satellites 

�� High Speed Relay Satellites 

�� Ground Station Facilities 

2.3.1.1 Data Source and Relay Satellites 

The Data Source and Relay Satellites (DSR) perform the task of observation and data 

gathering. The Earth Observation Satellites form a major portion of this category. The 

satellites may pick up data over land, ocean, ice or according to the satellite day and 

night times. If a satellite has only one antenna, it can only perform the task of data 

sourcing. In addition, some satellites may possess multiple antennae and in such cases 

perform the additional task of data switching in the satellite network. 
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2.3.1.2 High Speed Relay Satellites 

Satellites may be put into Earth orbit for the purpose of data switching of external 

traffic. These satellites provide additional capacity for the SBI Network and are called 

the High Speed Relay Satellites (HSR). These satellites will most likely be in medium 

Earth orbit or in geo-synchronous orbit to provide greater area of coverage over the 

Earth. The high-speed relay satellites possess multiple omni-steerable antennae and 

can contact any other SBI node in its line of sight. 

2.3.1.3 Ground Station Facilities 

Specialized ground stations located on the surface of the Earth and used for the 

primary purpose of data traffic termination are called facilities. The facilities have the 

capability of contacting any satellite in its line of sight and will possess multiple 

steerable antennae. A facility may also perform the task of an Operations Node, 

wherein it computes the routing topology for the SBI network and the data schedules 

for the data source satellites. 

2.3.2 SBI Networking 

The real-world SBI system utilizes IP networking over RF or optical links. The SBI 

Emulation System uses IP over Ethernet for emulating the space communication. The 

satellites and facilities utilize a high bandwidth communication link for data transfer. 

The antennae employed in a SBI are assumed to be omni-orientable, i.e., they can be 

steered in any required direction so as to be able to contact any other antenna in its 

field of view. 
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2.4 Space Based Internet Emulation Architecture 

This section describes the architecture of the Space Based Internet Emulation System. 

An outline of all the modules in the emulation system is given. Detailed descriptions 

of all the modules are explored in the following chapters. 

2.4.1 Overview 

The SBI Emulation System is comprised of these major modules: 

1. Emulation Software: This module controls and monitors the emulation scenario 

and emulates portions of the scenarios that will be deployed in hardware in the 

actual SBI system. 

2. Node Software: This module is mostly comprised of the actual software that 

would run aboard the SBI system. It comprises the systems that accomplish the 

routing, switching, instrument scheduling and data sourcing tasks. 
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3. Emulation Network: The emulation network forms the part of the emulation 

system that takes care of the data transfer mechanism. 

Figure 2-1: SBI Emulation Architecture 
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2.4.2 Emulation Software 

The emulation software component of the SBI Emulation System controls, configures 

and monitors the emulation scenario. The Emulation Software emulates portions of 

the actual SBI environment to provide the impression of operating in the real world. It 

also acts as a user interface to provide a graphical and statistical output to the user. 

The Emulation Software system is made up of the following modules. 

�� Emulation Manager 

�� Node Emulation Software 

�� Node Communication Emulation 

2.4.2.1 Emulation Manager 

 The Emulation Manager is a separate process that oversees the running of the 

system. The Emulation Manager sends system configuration commands to the nodes 

and controls the emulation scenario. It also provides an interface for starting the 

emulation scenario and initiates the emulation on the nodes. During the emulation, 

control commands are sent to the nodes and status reports are received from the nodes 

periodically. An Operations Channel exists between the Operations Node and the 

other nodes. This passes through the Emulation Manager that receives the routing 

table updates that are destined for the nodes and forwards them to the appropriate 

nodes. 
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2.4.2.2 Node Emulation Software 

The Node Emulation Software resides on the SBI Nodes and prepares the nodes for 

the emulation. It also controls and monitors the SBI Node attributes. The Emulation 

Manager maintains a multicast connection with the Nodes, and sends commands and 

receives status messages from the Nodes via this connection. The main features of the 

Node Emulation Control module are tabulated here. 

�� Configure the Ethernet and Virtual Ethernet [6] devices on the SBI Nodes 

according to the scenario specifications. 

�� Setup the QoS features on the Linux kernel as required by the emulation scenario. 

�� Start the Operations Node and Node programs when the emulation is started. 

�� Update the communication link parameters according to the link emulation. 

�� Periodically send status messages regarding the number of packets processed on 

each interface used in the emulation. 

�� Destroy the QoS setup and Virtual Ethernet devices on termination of the 

emulation scenario. 

The features of the Node Emulation Control Modules will not be discussed in this 

document and serve as a background for the actual thesis. 

2.4.2.3 Node Communication Emulation 

The Node Communication Emulation software consists of the instrument emulation 

and communication emulation systems. The instrument emulation software emulates 

the data gathering mechanisms of Earth Observation Satellites and initiates data 

traffic according to the satellite traffic models. The communication emulation 

software emulates certain satellite communication characteristics that exist in the real 
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world. The two main features of a real world satellite communication link are high 

link delays and high bit error rates. 

Since the emulation system is a terrestrial network utilizing Ethernet cables for the 

communication medium, the delay times and bit error rates of a real world satellite 

system have to be reproduced in software.  

The SBI System also makes use of Virtual Ethernet Devices in the Communication 

Link Emulation. The Virtual Ethernet devices are built over the physical Ethernet 

devices and serve as the communication interfaces for the emulation. 

The design and implementation of the satellite communication link emulation 

including the link properties and the Virtual Ethernet interface used in SBI is 

explained in [6]. 

2.4.3 Node Software 

The SBI Node software consists of the actual software that will be used in the SBI 

system in the real world. There exist two types of nodes based on the functionality 

performed: 

�� SBI Node or Common Node 

�� Operations Node 

2.4.3.1 SBI Node 

The SBI Node performs data traffic switching according to the entries in the routing 

table. The routing table is filled by the route updates received from the Operations 

Node. The Node software also performs data traffic sourcing modeling the actual data 

generation characteristics of Earth Observation Satellites. 
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2.4.3.2 Operations Node 

There exists a centralized Operations Node that performs some of the major functions 

in the system. The Operations Node computes the network topology and generates 

route updates for the network, which are then transmitted to all the nodes for updating 

their routing tables. The Operations Node also calculates the data scheduling times 

for the Data Source satellites and transmits this information to the relevant nodes in 

order for them to begin data traffic generation. 

2.4.4 Emulation Network 

The emulation network consists of the transmission channels for the SBI traffic. 

There exist two main types of channels: 

�� Management Network 

�� Data Network 

2.4.4.1 Management Network 

The Management Network is a low bandwidth network connecting the Emulation 

Manager to the SBI Nodes. The Management Network carries control and 

configuration information from the Emulation Manager to the SBI Nodes. Status 

information from the nodes is also carried to the Emulation Manager in the reverse 

path. 

2.4.4.2 Data Network 

The Data Network carries the SBI data traffic between the SBI Nodes. The Data 

Network comprises high bandwidth channels for transmitting the satellite observation 

traffic from the originating Data Source satellite to the terminating facility. The 

Virtual Ethernet devices form an integral part of the Data Network. 
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2.5 External Software 

The Space Based Internet Emulation System makes use of certain external software 

modules for performing the orbital computations associated with a satellite system. A 

data traffic generator is also used to validate the design of the emulation system. The 

SBI system utilizes two software suites for this purpose: 

�� Satellite ToolKit 

�� Netspec 

2.5.1 Satellite ToolKit 

The Satellite ToolKit (STK) [7] program from Analytical Graphics Inc. is a software 

suite designed for modeling satellite and space vehicle systems. STK provides easy 

and fast methods of satellite propagation and calculation of satellite coverage times.  

 

The main features of STK utilized in the SBI system are outlined below: 

�� Creation of scenarios with satellites and ground stations 

�� Satellite propagation with different types of propagators 

�� 2-Dimensional and 3-Dimensional views of the scenario 

�� Ability of a client program to connect to STK via a TCP socket 

�� Generating reports detailing access times and distances between nodes 

�� Generating reports of satellite positions and daylight times 

�� Creation of satellite chains and constellations 
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2.5.2 NetSpec 

NetSpec [8][9][10] is a traffic generator program developed at the University of 

Kansas. The main feature of NetSpec is that it supports different types of data traffic 

models including burst type, mpeg, video and voice traffic. It also involves a server 

daemon that precludes the invocation of an explicit server during the actual data 

transfer process. This places it apart from other data traffic generators like ttcp that 

require an explicit server process to be invoked on the server machine. Because of 

this feature, the client can directly start the data traffic generation process. 

This chapter provided a description of the architecture of the SBI Emulation System. 

The next chapter discusses the architecture and design of the Emulation Manager and 

related software. 
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3 SBI Emulation Manager 

This chapter explores the architecture and design of the SBI Emulation Manager 

(EM). The first section describes the overall architecture and the subsequent sections 

explain the detailed design of the modules in the EM. 

3.1 Architecture 

This section describes the architecture of the Emulation Manager. The Emulation 

Manager is made up of the following modules: 

�� I/O Interface: The Input/Output Interface for the SBI Emulation System is 

composed of an XML Interface, Status Windows and a graphical display 

interface. 

�� Node Database: Information regarding the SBI nodes is stored in the Node 

Database. 

�� STK Interface: The STK interface consists of a TCP connection to the Satellite 

ToolKit application. STK is used for retrieving access and position reports of the 

nodes and as a graphical system output. 

�� Operations Node Interface: This interface connects to the Operations Node and is 

used mainly as a mediator between the Operations Node and STK.  

�� Operations Channel Interface: The Operations Channel Interface receives 

messages from the Operations Node destined for the SBI Nodes and appropriately 

forwards them. This includes the routing table updates and the instrument 

scheduling messages. 
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�� Node Manager: The Node Manager configures the nodes and readies them to 

receive the emulation messages. The network interfaces and the QoS modules on 

the nodes are configured and updated through commands sent by the Node 

Manager. 

 

Figure 3-1: Emulation Manager Architecture 

The following sections describe the functions and design of the modules in detail. 
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3.2 I/O Interface 

The I/O Interface in the SBI Emulation System is composed of the following 

modules: 

�� XML Interface [11] 

�� Status Windows 

�� STK Graphical Displays 

The following sections detail the working of these modules. 

3.2.1 XML Interface 

The SBI Emulation System makes use of an XML file as input for the emulation 

scenario. The XML file is parsed and the scenario information is stored in the 

Emulation Manager. This section provides an overview of the XML interface used in 

the SBI Emulation Manager. 

The SBI XML Interface uses the Apache Xerces [12] package for XML parsing. This 

section provides a general overview of XML and then goes on to describe the main 

components of the SBI XML Interface. The Document Object Model [13] format of 

parsing XML files and the two main parts of the SBI XML Interface, the Validator 

and the XML Parser are discussed. 

3.2.1.1 Overview of XML 

The eXtensible Markup Language (XML) is a markup language along the lines of 

HTML. XML provides an interface for describing data. The main difference between 

HTML and XML is that HTML uses a set of pre-defined tags and XML allows the 

use of user-defined tags. This allows XML to be used in different types of data 

processing applications. 
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XML provides the use of two main types of file definitions. 

�� Document Type Data [14] 

�� XML Schema Definition [15][16] 

The Document Type Data (DTD) definition for XML is a very simple model for a 

XML file. A DTD defines the structure of an XML file and provides a definition for 

the individual elements of the XML file. 

The XML Schema Definition (XSD) provides a far more complex and restricting 

definition for an XML file. The Schema definition provides the basic data types and 

allows extensibility to higher user-defined data types. User-defined data formats are 

also allowed in a schema, which can be used for strict syntax checking for data 

objects. The Schema interface uses a schema definition file that provides a listing of 

the allowable syntax for the XML file. This definition file is used both for validating 

the syntax as well as parsing the contents of the XML file. 

3.2.1.2 Document Object Model 

The data from an XML file can be parsed and manipulated using a Document Object 

Model (DOM) interface. The DOM interface is a programming interface for XML 

documents and allows a program to navigate an XML file and access and modify its 

individual elements. The DOMParser is an interface of the xerces package that allows 

parsing of a XML file in accordance with the specified schema. It provides methods 

for specifying a schema definition file and validating a XML file in accordance with 

the schema and provides a tree view of the XML file tags. Individual nodes in the tree 

can then be accessed and their values stored. 
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3.2.1.3 SBI Validator 

The Validator class extends the DOMParser class of the Xerces XML parser package. 

The Validator checks for correctness of the scenario file according to the schema. The 

schema used is outlined in Appendix II. This is accomplished by invoking the 

parse() method of the DOMParser class. 

3.2.1.4 SBI XML Parser 

The XMLParser class is a SBI specific parser that parses all the tags in the XML file. 

The XMLParser class contains the parse() method, which parses the tags in the 

scenario XML file. The values defined in the tags are then stored in the Node 

database. 

3.2.2 Status Windows 

The SBI Emulation System makes use of two status windows to display the working 

of the system. The status windows are the Network Status and the Instrument Status. 

This section provides an overview of the features of these windows. 

3.2.2.1 Network Status 

The Network Status Module keeps track of the network conditions in the SBI 

Emulation System. The conditions that are monitored and displayed to the user are: 

�� Network Routes: This module monitors the routes in the SBI network and route 

updates are displayed in the status window. 

�� Link Specifications: This module also keeps track of the link specifications on the 

satellites and ground stations in the SBI network. The parameters that are 

monitored are the interface bandwidths and the delay and bit error rates for the 

communication links established in the network. 
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�� Interface Status: This module also tracks the status of the network interfaces on 

the satellites and ground stations. The number of bytes and packets transmitted 

and received on each interface are displayed to the user. 

3.2.2.2 Instrument Status 

The Instrument Status Module keeps track of the satellite instruments in the 

emulation scenario. This module monitors the following parameters 

�� Instrument specifications: The instrument specifications that are displayed on the 

Instrument Status Window include the instrument data traffic rate and the data 

type. 

�� Data Traffic Specifications: The Instrument Status Window keeps track of data 

traffic generation by the SBI nodes and displays a decrementing counter for data 

transmission time. 

3.2.3 STK Graphical Displays 

The Satellite ToolKit application is the main output display interface for the SBI 

Emulation System. STK provides two types of displays, a 2-Dimensional display and 

a 3-Dimensional display. 

3.2.3.1 STK 2-D Window 

The STK 2-D Window provides an equidistant cylindrical projection view of the 

Earth. The nodes comprising of the satellites and ground stations are super-imposed 

on this view. SBI uses STK’s real-time animation capabilities for displaying the SBI 

network. Network connections in the SBI network are also capable of being displayed 

in the window. 
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3.2.3.2 STK 3-D Window 

The STK 3-D Window provides a view of the Earth as a globe. Satellites and ground 

stations can be viewed on and above the Earth at the specified altitudes. Provision for 

rotating the Earth and zooming in on specific portions of the display exist as well as 

viewing the display from the point of view of different objects in the scenario. The 3-

D window also displays the SBI network connections. 

3.3 Node Database 

The SBI Emulation Manager stores information regarding the items in the scenario. 

These items include satellites, facilities, their network interfaces and satellite 

instruments. The specifications for these objects are read from the input XML file and 

stored for retrieval during later processing. This section details the various objects 

and the data that are stored within them. 

3.3.1 Scenario 

The Scenario object contains the specification of the emulation scenario being run 

and uses the following data items: 

�� Scenario Name: The scenario is identified by a unique name, which is also used to 

define the scenario in STK. 

�� Scenario Start Time: The scenario start time defines the start time of the 

emulation. 

�� Scenario End Time: The scenario end time defines the end time of the emulation. 
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3.3.2 Interface 

The network interfaces on the SBI nodes are the devices used for data transfer. These 

interfaces are specified in the scenario and setup on the nodes. 

�� Interface ID: The identification of the interface 

�� Interface bandwidth: The bandwidth allocated to the interface 

3.3.3 Instrument 

The satellite instruments model the data traffic in a SBI scenario. The parameters that 

specify the instruments are: 

�� Instrument Name: A unique name for the instruments 

�� Instrument Data Type: The type of data traffic generated by the instrument 

�� Data Rate: The data traffic rate generated by the instrument 

�� Destination Name and Port: The destination for the data traffic 

3.3.4 Satellite 

The Satellite object stores information regarding the satellite nodes in the scenario.  

�� Satellite Name: this name is unique in the scenario and defines the satellite object. 

�� Propagation parameters: SBI uses the two-body propagation method for satellite 

propagation. These parameters define the orbits of the satellites. 

�� Instrument Specifications: The specification of the instruments on board the 

satellites is provided. 
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�� Interface Specifications: The network interfaces on board the satellites are 

specified here. 

3.3.5 Facility 

Facilities or ground stations are generally control centers and act as the end-points for 

data in a SBI network. The facilities are specified by the following parameters. 

�� Facility Name: This is a unique name in the scenario. 

�� Positional parameters: The position of a facility on the surface of the Earth is 

specified by the latitude and longitude. 

�� Interface Specifications: The network interfaces on board facilities is specified 

here. 

3.4 STK Interface 

The STK Interface library interfaces with the Satellite ToolKit application. The SBI 

scenario is executed in STK with the real-time offset specified. A TCP connection is 

initiated to STK and command requests are sent through this connection. The STK 

Interface performs the following functions: 

�� Starts up STK and initiates a connection to it 

�� Loads the user-specified scenario and fills it with the satellites and facilities 

required for the emulation 

�� Configures 2-D and 3-D graphical outputs for the scenario 

�� Creates chains between nodes as directed by the Operations Channel according to 

the routes setup in the scenario 
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In addition, the STK Interface also forwards requests from the Operations Node to 

STK and returns the replies. The main requests are for the following: 

�� Current Emulation Time 

�� LOS Access Time for access between specified nodes 

�� Range between specified nodes 

�� Orbital position information for satellites 

�� Sunlight exposure times for satellites 

3.5 Operations Node Interface 

The Operations Node Interface receives request messages from the Operations Node. 

The Operations Node sends the requests to STK and forwards the responses back to 

the requesting module. The requests received from the Operations Node are: 

�� LoS access time reports: Access Time Reports are requested for each pair of 

nodes in the scenario. Access Time Reports are a set of records containing the 

times for each access interval for a pair of nodes. Each access record contains two 

fields: start time and end time. The start and end times signify the access interval 

for the nodes. 

�� Node distance reports: Node Distance Reports are also requested for a pair of 

nodes. A Node Distance Report is a set of records containing the distance between 

the nodes at an instant of time. Each record consists of two fields, the time and the 

range. It signifies the range between the nodes at that instant of time.  

�� Satellite position reports: Satellite position reports are requested for a particular 

node in the scenario. Satellite position reports enumerate the satellite’s footprint 
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on the Earth in latitude and longitude format. The report is composed of records 

containing the time and the satellite position at that instant of time. 

�� Emulation Time: The Operations Node requests the emulation time at startup. 

�� Orbital Period: The Operations Node on startup requests the Orbital Period of 

satellites. This is used for modeling the data gathering capabilities of satellites. 

3.6 Operations Channel Interface 

The Operations Channel receives the routing and instrument scheduling updates from 

the Operations Node and transmits them to all the nodes. The messages are also sent 

to the other Emulation Manager modules for processing. The Operations Channel 

Interface listens on the Operations Channel for messages from the Operations Node. 

Messages received are routing updates destined for the nodes and instrument 

scheduling messages for the nodes for the purpose of generating data traffic. The 

received messages are copied and the original message is sent to the destined node via 

the Management Network. A copy of the message is sent to the Emulation Manager 

modules where it is used for the display interface and statistical computations. 

3.7 Node Manager 

The Node Manager works as a Node Controller Interface and sends commands to and 

receives status reports from the Nodes. The Node Manager configures the nodes and 

readies them for the emulation. The main functions performed by the Node Manager 

are: 

�� Query the nodes and select the requisite number of nodes needed for the 

emulation 

�� Configure the physical Ethernet interfaces on the nodes 
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�� Create and configure the Virtual Ethernet interfaces on the nodes 

�� Create and configure the QoS features on the interfaces 

�� Start the execution of the Node Software on all the nodes and the Operations 

Node Software on the Operations Node 

�� During the emulation run, the Node Manager updates the QoS features 

periodically 

�� On shutdown of the emulation scenario, the Node Manager shuts down the QoS 

and the Virtual Ethernet interfaces. 

3.8 Emulation Manager Functionality 

This section enumerates the functionality of the Emulation Manager. The Emulation 

Manager performs the following tasks: 

�� It parses the XML input file chosen by the user 

�� Starts up STK and instantiates a connection to it 

�� Starts the Operations Channel, Node Monitors, Status Modules. 

�� Sends commands to the Node Manager to ready the nodes for emulation 

according to the scenario requirements 

�� Sends commands to the Node Manager to start the emulation on the nodes 

�� Receives report requests from the Operations Node, forwards requests to STK and 

returns the reports to the requesting node 

�� Receives route updates and scheduling messages on the Operations Channel and 

forwards these messages to the destined nodes 
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�� Sends a copy of these messages to the output interface for display 

�� Receives status messages from the nodes and sends them to the output interface 

This chapter provided a detailed view of the Emulation Manager and its associated 

modules. The next chapter describes the architecture and functionality of the 

centralized Operations Node. 
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4 Operations Node 

The SBI Emulation System uses a central specialized node called the Operations 

Node. The Operations Node computes the routing updates for the SBI network and 

feeds them to all the nodes in the network. The Operations Node also computes the 

data scheduling times for the node instruments according to the traffic models 

incorporated into it. These scheduling times are then sent to the corresponding nodes 

and the traffic generation is started. This chapter explores the architecture of the 

Operations Node and the design of the individual modules in the Operations Node. 

4.1 Architecture 

The Operations Node Software is made up of three main programs: 

�� Attributes Program 

�� Routing Program 

�� Instrument Scheduling Program 

4.1.1 Attributes Program 

The Attributes Program performs the following functions: 

�� The Attributes Program receives information regarding the nodes on start-up. 

�� The Routing and Instrument Scheduling Programs request information from the 

Attributes Program for their processing needs. The Attributes Program obtains 

this information from the Emulation Manager and returns it to them. 
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�� The Attributes Program provides the data regarding the nodes to the Routing 

Program that processes the information and generates an efficient topology for the 

network. 

�� The Attributes Program passes on the node information to the Instrument 

Scheduling Module that computes the schedule for the nodes. 

 

Figure 4-1: Operations Node Architecture 
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4.1.2 Routing Program 

The Routing Program develops efficient routes for data flow in the SBI network. The 

Routing Program performs the following tasks: 

�� It requests LOS times and access distances between each pair of nodes from the 

Attributes Program as required. 

�� The Routing Program computes the topology of the network using this 

information. 

�� The new set of routes are then computed and transmitted to all the nodes in the 

network. 

�� It then waits for the next LOS event to occur for the next topology generation. 

4.1.3 Instrument Scheduling Module 

Satellites provide Earth surface observation data over a variety of conditions 

depending on the Earth’s topology. Satellites can scan and generate data over land, 

ocean, ice or a combination of these. The SBI Emulation System contains an 

Instrument Scheduling Module [12] that performs the task of scheduling the data 

traffic generators according to the actual satellite types used in the emulation. The 

Instrument Scheduling Module performs the following functions: 

�� It receives the node information on startup from the Attributes Program. 

�� It requests and receives satellite position information and satellite sunlight time 

information from the Attributes Module. 

�� The scheduling times for the satellite instruments are computed and transmitted to 

the corresponding nodes to generate data traffic. 



   35

This thesis concentrates on the design of the Attributes Program and the Routing 

Program. The next section describes some of the design strategies for the SBI Nodes. 

The later sections describe the detailed design of the Attributes Program and the 

Routing Program. The design of the Instrument Scheduling Program is out of the 

scope of this work. Considerable work on satellite data traffic models and instrument 

scheduling emulation has been described in [12]. 

4.2 Design Strategies 

This section details some of the design strategies employed in the SBI Emulation 

Operations Node. These include the emulation time handling mechanism, the data 

termination interface strategy and the route update time handling problem. 

4.2.1 Modular Design 

The architecture of the Operations Node has been designed keeping modularity in 

mind. The main rationale for the architecture has been the thought that any module 

should be replaceable with an equivalent module at some point. The centralized 

architecture presented herein is a stepping-stone towards evolving into a more 

distributed structure, where each SBI node performs its own routing and scheduling 

computations. 

4.2.2 Emulation Time 

The Emulation Time handling mechanism is one of the base features of the 

Operations Node. The SBI emulation system runs with a real time offset, i.e., in real 

time starting from the date and time specified. The emulation start time is received 

from the Emulation Manager on startup. The emulation time library then calculates 

the offset of the current system time from the emulation time and maintains this 
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difference. When the current emulation time is required, the offset in relation to the 

current system time is used to calculate the current emulation time. 

4.2.3 Data Termination Interfaces 

A dynamic routing environment leads to a host of complex issues. One such is the 

problem of data termination interfaces, which are the end-point interfaces for an 

application generating data traffic. The data termination interfaces need to be fixed 

for data transfer at the application layer. However, in an ever-changing topology such 

as a satellite network, the routes change with every change in topology and the routes 

to the termination points also change. In order to keep the termination points constant 

in the emulation system, experiments were carried out regarding the use of the 

“dummy interfaces”. Linux provides the use of “dummy interfaces” which can be 

assigned IP addresses and can be used as data source and destination points in a 

socket application. The dummy interfaces are used in the SBI emulation system for 

this purpose. Under this system, each node has one dummy interface and it acts as 

both a source and terminating point for data traffic at the application layer. This 

requires the use of two routing commands for a node, one for routing data to the 

incoming interface of the destination node and one to the dummy interface of the 

destination node. This is illustrated by the following representation. 
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Figure 4-2: Illustration of Dummy Interface 

The following tables detail the route entries present on Node1, Node2 and Node3 

respectively. 

Destination Gateway 

10.67.2.1 10.67.1.1 

10.67.199.2 10.67.2.1 

10.67.3.1 10.67.2.1 

10.67.199.3 10.67.2.1 

Table 4-1: Route entries for Node1 

 

Destination Gateway 

10.67.1.1 10.67.2.1 

10.67.199.1 10.67.1.1 
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10.67.3.1 10.67.2.2 

10.67.199.3 10.67.3.1 

Table 4-2: Route entries for Node2 

Destination Gateway 

10.67.2.2 10.67.3.1 

10.67.199.2 10.67.2.2 

10.67.1.1 10.67.2.2 

10.67.199.1 10.67.2.2 

Table 4-3: Route entries for Node3 

The extra route entries make it possible for the other nodes to access the destination 

node’s dummy interface for data transfer purposes. Thus, an application on Node1 is 

able to initiate data transfer with the source IP address as 10.67.199.1 and the 

destination IP address as 10.67.199.3. 

4.3 Attributes Program 

The Attributes Program acts as a mediating entity between the Operations Node 

computational modules and the Emulation Manager. The Routing and the Scheduling 

Modules request node information updates from the Attributes Program. This 

information is in turn requested from the Emulation Manager and the replies are 

returned to the requesting program. 

The Attributes Program stores the initial node information relayed from the 

Emulation Manager at the beginning of the emulation. This information is stored in 

data structures and is relayed to the other Operations Node programs at the start of the 
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scenario. The following section mentions the data structures present in the Attributes 

Program and the next section discusses the sequence of execution. 

4.3.1 Data Structures 

The Attributes Program maintains a node data table with information about all the 

nodes in the scenario. The node data table contains the following information: 

�� Node identification number 

�� Type of Node: Satellite or Facility 

�� Orbital parameters of the satellite node or position of the ground station facility 

�� Communication characteristics: Bit Rates, Signal Strength 

�� The number of antennae on the node 

�� The IP address for each node antenna 

4.3.2 Functionality 

The Attributes Program acts as a link between the Routing and Scheduling Programs 

and the Emulation Manager. As such, the Attributes Program effectively isolates 

these programs from the Emulation Manager. The Routing and Instrument 

Scheduling Programs request for access and position reports from the Attributes 

Program. The Attributes Program contacts the Emulation Manager and receives this 

information, which is then relayed back to the requesting program. The sequence of 

events in the Attributes Program is as follows: 

�� On startup, the Attributes Program receives information from the Emulation 

Manager regarding the scenario. The information received is pertaining to the 
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details of the interfaces on all the SBI nodes and the instruments on the Data 

Source and Relay Satellites. 

�� The Routing and Scheduling Programs initiate a connection to the Attributes 

Program on startup. The Attributes Program then transfers the interface data to the 

Routing Program and the instrument data to the Scheduling Program. 

�� It then waits for requests from the two programs. Upon reception, it contacts the 

Emulation Manager and relays the replies to the requesting program. 

4.4 Routing Program 

The Routing Program computes the topology of the network and generates the routing 

table updates for all the nodes in the SBI network. The routing updates are then 

transmitted to the nodes through the Operations Channel. The following modules are 

used in the Routing Program: 

�� Route Interface: The Route Interface module performs the necessary 

configurations prior to computing the network topology. 

�� Access Module: The Access Module retrieves, stores and processes the access 

times for LOS access between each pair of nodes in the SBI network. 

�� Topology Generator: This module performs the computations involved in 

generating a network topology for the SBI system. 

�� Route Generator: The Route Generator Module takes the generated topology and 

computes the routing table updates for all the nodes in the SBI network. 
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A pictorial view of the Routing Program modules is shown in Figure 4-3. 

Figure 4-3: Routing Program Architecture 

The flow of events in the Routing Program is given in Figure 4-4. 
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Figure 4-4: Routing Program Flow of Events 

The following sections describe each of the modules in detail. 
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4.4.1 Route Interface 

The Route Interface Module performs some of the preliminary actions in computing 

the network topology. The main functions of the Route Interface Module are: 

�� Topology Initialization: The Topology Initialization Module performs the 

initialization functions before computing the network topology. 

�� Event Queue: The Event Queue Module is used to set events in the Routing 

Program. 

4.4.1.1 Topology Initialization 

The Topology Initialization Module performs the preliminary functions related to the 

topology generation for the SBI network. This includes the initialization process and 

the cost calculation for the routes. The Topology Initialization Module performs the 

following functions: 

�� For each link in the network, it is found if the links have line-of-sight to each 

other. 

�� If line-of-sight is present, the distance between the nodes comprising the link 

under consideration is found. The initial cost is calculated based on the distance. 

�� If the two nodes do not have line-of-sight to each other, the maximum cost (of 

1000) is attached to the link. 

4.4.1.2 Event Queue 

The Event Queue is set according to the line-of-sight events that occur in the SBI 

network. The Access Module provides information regarding the event times in the 

network. These event times are provided to the Event Queue Module and an alarm is 
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set for the event time. The event alarm runs the event handler method, which calls the 

methods for computing the network topology. 

4.4.2 Access Module 

The Access Module handles the LOS access reports in the Routing Program. The 

Access Reports are used to determine the access times and range between nodes in 

the network. 

4.4.2.1 Data Structures 

The Access Module handles a data structure for each of the nodes in the scenario. 

This structure contains the access information regarding each of the other nodes in the 

network relative to the current node. The Access Module uses the following data 

items for it’s processing: 

�� Destination ID: This signifies the destination node for the current source node. 

�� Current Record Pointer: This points to the current position in the access record. 

�� Start Time: The start time refers to the access start time for the current access 

record. 

�� Stop Time: The start time refers to the access stop time for the current access 

record. 

�� Current Range Record Pointer: This points to the record under processing in the 

range report. 

Two kinds of reports are processed for calculating the access between the nodes. The 

first one is the access report, which is a series of records detailing the times of access 

for the nodes. A record in the access report is as follows: 

2002/01/01 02:47:03.30,2002/01/01 03:28:52.67 
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The first term represents the access start time and the second term represents the 

access stop time. 

The second type of report is the range report. The range report also contains two 

fields, the time and the range between the nodes at that point in time. A range report 

record is as follows: 

2001/10/03 00:02:00.00    13571.037274 

4.4.2.2 Functionality 

The following is the sequence of events in the Access Module: 

1. The Route Interface Module requests access reports for a pair of nodes when 

calculating the costs of the communication links in the network. 

2. If no report exists, an access report is requested for the next 24 hours from the 

Attributes Program. Else, step 6 is executed. 

3. If no access report is received, then there is no access for the period specified. The 

startTime and stopTime fields are updated to the end time of the report request. 

4. The access report is analyzed and the current record pointer is updated to point to 

the next field. The record is processed and the start and stop times are stored in 

the startTime and stopTime fields respectively. 

5. If the current time is between start and stop times, then the nodes have access. 

6. If a report already exists, then the startTime and stopTime fields are compared 

with the current time. 

7. If the current time is greater than stop time, the next record in the report is 

accessed. If there are no more records, then steps 2 to 5 are executed. Else, steps 4 

and 5 are executed. 
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4.4.3 Topology Generator 

The Topology Module performs the task of generating a network topology for the 

SBI network. The Topology Module takes the communication link costs for each of 

the links as input and computes a new optimized topology. The algorithm used for the 

computation is discussed in the next chapter. 

4.4.4 Route Generator 

The Routing Module uses the computed network topology as input from the 

Topology Module and generates the routing table updates for all the nodes in the SBI 

network. 

4.4.4.1 Functionality 

The Routing Module determines interfaces for the source, hop and destination for 

each route. The Routing Module works as follows: 

1. The computed topology for the network is received from the Topology Module. 

2. For each of the nodes, the routes are determined to the rest of the nodes in the new 

topology. Each route is signified by source, the next hop and destination 

interfaces. 

3. The routes are computed afresh as outlined below for each new topology. This 

reduces the computational complexity rather than utilizing the previous set of 

routes to configure the new set. 

4. A recursive algorithm is employed to determine interfaces for all the routes. 

The method of determining the new route configuration is described here. A route 

consists of a source, nexthop and destination interfaces denoted by src, hop and dst 

respectively. 
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1. First, a check is made whether a route already exists between src and dst. If yes, 

the same route is used. 

2. Else, if the src and hop nodes are different, it is checked whether a route exists 

between src and hop. 

3. If yes, it is checked if there exists a route between hop and dst nodes. If so, the 

same routes are used and then step 6 is executed. Otherwise, a recursive 

computation is attempted to find a route between the hop and dst nodes by 

executing from step 1 again. 

4. Else, it is checked if there is a route between the hop and dst nodes. If so, any of 

the free interfaces on the src and hop nodes and the dst interface from the existing 

route is used for the route. The additional related routes are then added in step 6. 

5. If none of the above routes exist, a free interface on the src and hop nodes is used 

and a new route is found between the hop and dst nodes by executing from steps 1 

again for the hop and dst nodes. 

6. The additional routes added for each new route are: 

�� The route from src to hop with hop as the next-hop. 

�� The reverse route from hop to src. 

�� The reverse route from dst to src. 

 

This chapter described the design of the Operations Node. The workings of the 

Attributes Program and the Routing Program have been explained. The next chapter 

discusses a simple topology generation algorithm for the SBI Emulation System. 
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5 SBI Network Topology 

Routing is an integral part of any communication network. An efficient routing 

algorithm helps in the continuous movement of data in an ever-changing network. 

Routing updates allow a node to perform switching of data traffic. In a network 

whose nodes are in constant motion relative to one another, the problem of routing is 

multi-fold and has to be updated every time there is a change in the network topology. 

In the SBI network, the satellites are in constant motion and gain and lose line-of-

sight of one another from time to time [18][19]. Thus, a good routing algorithm is 

required for generating the network topology for the SBI network. This chapter 

discusses the problems of routing in space and looks at the accepted methods of route 

computation before outlining a simple and efficient algorithm to generate the network 

topologies in the SBI emulation system. 

5.1 Routing In Space 

The space environment is very different from the terrestrial internet environment. 

High delays and high bit error rates characterize the data transmission in space. 

Satellites move at high speeds and gain and lose line-of-sight of one another in 

minutes. Most of the Earth-Observation Satellites reside in LEO orbit and therefore 

have a very small footprint on the ground and consequently a small window of access 

with a ground station. Due to these factors, the routing tables for the satellites need to 

be updated very often. Terrestrial routing techniques like OSPF and BGP are not 

suited for the satellite network as they involve transfer of information between the 

nodes. This is not suited for the satellite environment as they necessitate unnecessary 

overhead, the routes take a while to stabilize and the information quickly becomes 

obsolete due to the rapidly changing satellite topology. However, the space segment 

has a number of advantages, the main ones being: 
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�� Predictability: Satellites move in an orbit around the Earth. The position of the 

satellites at any point of time can be accurately pinpointed with the help of orbit 

prediction software. 

�� Periodicity: Each satellite has a definite period of revolution around the Earth. 

Extending this to multiple satellites, the satellite network topology will also be 

periodic in nature. 

Two measures have been proposed [19] for routing in the satellite network. 

�� Discrete Time-Dynamic Virtual Topology Routing (DT-DVTR) 

�� Virtual Node 

These work on the principle of hiding the mobility of satellites from the routing 

protocols running over the network. 

5.1.1 DT-DVTR 

Discrete Time-Dynamic Virtual Topology Routing is a method of routing wherein the 

satellite network is assumed to be a static network for certain periods of time and the 

routes computed for the network as for a static network. The link activation and 

deactivation is assumed to occur at discrete times and the topology is computed for 

the intervals between these times as for a static network. The routes can be computed 

offline and broadcast to the satellites in this method. 

5.1.2 Virtual Node 

In the Virtual Node method of routing, the routes are computed over a static virtual 

network and the satellites are assumed to move over this virtual network taking the 

place of each other as they move. For each connection handover, the satellites transfer 

all their routing information from one to another as they switch places in the virtual 

network. This method of routing is suited to constellation topologies where the next 
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satellite takes the place vacated by the previous one in the constellation. However, 

Earth Observation Satellites are not located in constellation orbits and this form of 

routing is not suited for their topology. 

5.2 Routing in the SBI Emulation System 

This section describes the characteristics of the routing strategies employed in the SBI 

Emulation System. The methodologies explained in the previous section are refined 

and applied in this scenario. 

5.2.1 General Characteristics 

The SBI Emulation System incorporates the DT-DVTR version of routing in its 

satellite environment. Gain or loss of line-of-sight between the SBI nodes is 

characterized as an event. The events are assumed to occur at discrete instants of time 

and the SBI network is taken to be static in between events. Thus, the routing 

protocol does not see the mobility in the satellite system and works on static network 

topologies. The routes are computed for the static network using the inter-node 

distance as the metric. The time between events is taken to be small enough so that 

the metrics are assumed to be constant in this interval. 

5.2.2 Route Update Time Handling 

The Space Based Internetwork is a good example of a highly dynamic topology. 

Satellites gain and lose line-of-sight to each other as they move in their orbits. A 

larger scenario leads to a higher number of connections that are added and removed in 

a certain time interval. If every connection handover were taken care of as a separate 

event, the route computations would overload the node’s computing powers. For this 

reason, route computations are done only at discrete intervals. Route update times are 

rounded off to facilitate better handling of events. Connection gain events should 
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come into picture after the event occurrence. Similarly, connection loss events should 

come into picture before the actual event time. By this line of reasoning, connection 

gain events are rounded up and connection loss events are rounded down. A better 

illustration of this concept can be seen in the timeline in Figure 5-1. 

In the figure, the routes are computed at r and r+1. Events occur at n-2, n-1, n, n+1 

and n+2. Events n-2 and n refer to new connections being made due to a pair of 

nodes coming into line-of-sight of each other. Events n-1, n+1 and n+2 refer to 

connections being broken due to a pair of nodes losing line-of-sight to each other. 

Figure 5-1: TimeLine 

Event n-1 has to be handled in the route update at r, since the route update r+1 is too 

far ahead in the future and the connection would have already broken by then. 

Similarly, Event n has to be handled in route update r+1, as the nodes would not have 

come into sight of each other at the time of the route update r. Thus, Events n-2, n-1 

and n+1 are handled in the route update r and Events n and n+2 are handled in the 

route update r+1. 



   52

5.3 Algorithm Overview 

The SBI Emulation System utilizes an extended minimum spanning tree algorithm 

[20][21][22] to determine the topology of the SBI network. This section provides an 

overview of the algorithm employed. The main features of the algorithm are: 

�� Minimum spanning tree generation 

�� Link limiting 

5.3.1 Minimum Spanning Tree Generation 

A minimum spanning tree represents a connected, acyclic minimum weight sub-graph 

containing all the vertices of a graph. A minimum spanning tree assures that all the 

nodes in a network will be included in the tree at a minimum cost. This make it 

perfectly suited for generating the route topology for a network. The SBI Emulation 

System makes use of a minimum spanning tree algorithm to build the network 

topology. The minimum spanning trees are computed for each node to generate the 

least-cost paths for accessing every pair of nodes in the network. 

5.3.2 Link Limiting 

A minimum spanning tree ensures that a node is able to contact all other nodes in the 

network with minimum cost. However, the number of interfaces on a node is fixed 

and may be less than the number of interfaces required for contacting all the nodes 

using the MST generated routes. Under such circumstances, the number of links in 

the MST generated routes has to be limited to generate a physically feasible topology. 

Links can be limited based on a number of factors, such as amount of usage, cost of 

the link etc. An algorithm is presented that limits links to generate a feasible MST 

network topology. 
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5.4 Algorithm Description 

This section describes the algorithm used in the SBI Emulation System for generating 

the topology of the SBI network. An example topology composed of six nodes is used 

to illustrate the working of the algorithm. The links formed in this topology are 

presented in Figure 5-1, which also shows the costs for the links.  

5.4.1 Initialization 

Two matrices are used in computing the topology, a cost matrix and a hop matrix. 

The cost matrix is used for determining the Link State between two nodes. The hop 

matrix is used for determining the nexthop for every communication link. The cost 

used to compute the topology is mainly a factor of the distance between the nodes 

under consideration. 

The matrices are initialized as follows. For every pair of connected nodes, the 

respective entries in the cost matrix are set to the cost of the links between the nodes. 

In the hop matrix, the entry for each of these nodes is set to the adjacent node. If there 

is no access between a pair of nodes, the corresponding entry in the cost matrix is set 

to MAX_COST (1000 here) and in the hop matrix to –1. 

The initial cost and hop matrices are shown here: 

 Destination 

Source 
1 2 3 4 5 6 

1 - 3 5 5 8 9 

2 3 - 2 1000 4 7 

3 5 2 - 9 3 5 

4 5 1000 9 - 1000 4 

5 8 4 3 1000 - 2 
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6 9 7 5 4 2 - 

Table 5-1: Initial Cost Matrix  

 

       Destination 

Source 
1 2 3 4 5 6 

1 - 2 3 4 5 6 

2 1 - 3 -1 5 6 

3 1 2 - 4 5 6 

4 1 -1 3 - -1 6 

5 1 2 3 -1 - 6 

6 1 2 3 4 5 - 

Table 5-2: Initial Hop Matrix 

Figure 5-2 shows the initial topology. The numbers near the ‘x’ marks denote the 

nodes and the numbers at the mid-point of the link lines refer to the link costs. 

Figure 5-2: Initial Topology 
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5.4.2 Spanning Tree Computation 

The spanning trees for each node are computed after the initialization. Computing the 

minimum spanning trees from each node provides the best way to reach all the other 

nodes in that tree from the root node. The spanning trees are computed in the network 

as follows: For every node in the network, it is attempted to insert another node in 

between that and every other node, the attempt succeeding if the new cost is lesser 

than the earlier cost to network between those nodes. In such cases, the hop matrix 

entry is updated to reflect the new next hop for the communication between these pair 

of nodes and the cost matrix entry is updated to reflect the new cost for the link. At 

the end of this exercise, the matrices will contain the best way to reach any pair of 

nodes in the network. The cost and hop matrices after the spanning tree computations 

are shown below: 

 

  Destination 

Source 
1 2 3 4 5 6 

1 - 3 5 5 7 9 

2 3 - 2 8 4 6 

3 5 2 - 9 3 5 

4 5 8 9 - 6 4 

5 7 4 3 6 - 2 

6 9 6 5 4 2 - 

Table 5-3: Cost Matrix after First Spanning Tree Computation 

  

    Destination 1 2 3 4 5 6 
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Source 

1 - 2 3 4 2 6 

2 1 - 3 1 5 5 

3 1 2 - 4 5 6 

4 1 1 3 - 6 6 

5 2 2 3 6 - 6 

6 1 5 3 4 5 - 

Table 5-4: Hop Matrix after Spanning Tree Computation 

Figure 5-3: First Iteration for Node 1 

 

The Figures 5-3 to 5-8 show the results after the spanning tree computations. 
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Figure 5-4: First Iteration for Node 2  
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Figure 5-5: First Iteration for Node 3 

Figure 5-6: First Iteration for Node 4 
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Figure 5-7: First Iteration for Node 5 

 

Figure 5-8: First Iteration for Node 6 

5.4.3 Link Limiting 

The next task is to identify if any of the nodes are using more links than the number 

of interfaces they possess. Link limiting is to be considered for those nodes that have 

more links than interfaces. The number of links versus the number of available 

interfaces per node is tabulated in Table 5-5. 

Nodes 1 2 3 4 5 6 

Interfaces 3 3 3 3 3 3 

Links 4 3 5 3 3 4 
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Removal 1 0 2 0 0 1 

Table 5-5: Interface and Link Comparison 

From the table, it is seen that nodes 1, 3 and 6 need more links than there are 

interfaces available. Furthermore, nodes 1 and 6 use only one extra link and node 3 

uses two extra links. Therefore, link limiting is to be considered for nodes 1, 3 and 6. 

The criteria for link limiting are: 

�� Least-used links: The links used the least number of times are removed first. The 

reason for removing these links is that the least-used links should cause the least 

amount of change in the topology after removal. Alternate routes should be fairly 

easy to find for the removed routes. 

�� Maximum-cost links: The links having the highest costs are removed. This is 

done so that the most expensive links are removed from the picture. 

Destination 

Source 
1 2 3 4 5 6 

1 - 3 1 2 - 1 

3 1 1 - 1 1 1 

6 1 - 1 2 3 - 

Table 5-6: Finding Least Used Links – Hop Matrix 

The corresponding original costs for these links are reproduced in Table 5-7. 

  Destination 

Source 
1 2 3 4 5 6 

1 -1 3 5 5 8 9 

3 5 2 -1 9 3 5 
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6 9 7 5 4 2 -1 

Table 5-7: Original Cost Comparison for Link Removal –Cost Matrix 

For node 1, the links 1-3 and 1-6 are the least used. Looking at Table 5-7, it is seen 

that the link 1-6 has the maximum cost of the two. Thus 1-6 is a candidate for 

removal. For node 3, all the links are used only once. In addition, two links have to be 

removed for node 3. One link that can be removed is 3-4, which carries a cost of 9. 

There exists a choice for the second removal, since both links 3-1 and 3-6 have a cost 

of 5. Here, a simple first found rule is used and the link 3-1 is removed. Similarly, for 

node 6, since the link 1-6 has already been targeted for removal, no more links need 

to be removed. Therefore, the three links removed are: 1-3, 3-4, 1-6. These links are 

removed from the original topography of the network. The new network topography 

is shown in Figure 5-9. 

 

Figure 5-9: Topology after Link Limiting 
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5.4.4 Spanning Tree Re-computation 

The spanning tree is recomputed for the network for the following reasons: 

�� Removing the least-used links could render certain nodes inaccessible. Re-

computing the spanning trees will provide alternate routes in the network for such 

nodes. 

�� Removal of links results in a differing topology from the original. The re-

computation of the network topology has to be done to change all the routes that 

were affected by the removal. 

The spanning tree is recomputed and the procedure outlined in the previous sections 

is repeated until a satisfactory network topology is configured, where all the nodes are 

accessible. Tables 5-8 and 5-9 show the cost and hop matrices used for the second 

MST computation. 

 

  Destination 

Source 
1 2 3 4 5 6 

1 -1 3 1000 5 8 1000 

2 3 -1 2 1000 4 7 

3 1000 2 -1 1000 3 5 

4 5 1000 9 -1 1000 4 

5 8 4 3 1000 -1 2 

6 1000 7 5 4 2 -1 

Table 5-8: Cost Matrix for Second Iteration 
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   Destination 

Source 
1 2 3 4 5 6 

1 -1 2 -1 4 5 -1 

2 1 -1 3 -1 5 6 

3 -1 2 -1 -1 5 6 

4 1 -1 3 -1 -1 6 

5 1 2 3 -1 -1 6 

6 -1 2 3 4 5 -1 

Table 5-9: Hop Matrix for Second Iteration 

 

The computation of the spanning trees with the modified topology is done again using 

the original matrices with the removed links. The new cost and hop matrices are 

shown in Tables 5-10 and 5-11. 

 

  Destination 

Source 
1 2 3 4 5 6 

1 -1 3 5 5 7 9 

2 3 -1 2 8 4 6 

3 5 2 -1 9 3 5 

4 5 8 9 -1 6 4 

5 7 4 3 6 -1 2 

6 9 6 5 4 2 -1 

Table 5-10: Cost Matrix after Second Iteration of Spanning Trees 
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   Destination 

Source 
1 2 3 4 5 6 

1 -1 2 2 4 2 4 

2 1 -1 3 1 5 5 

3 2 2 -1 6 5 6 

4 1 1 6 -1 6 6 

5 2 2 3 6 -1 6 

6 4 5 3 4 5 -1 

Table 5-11: Hop Matrix after Second Iteration of Spanning Trees 

Figures 5-10 to 5-15 show the new spanning trees for each of the nodes after the 

second iteration. 
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Figure 5-10: Second Iteration for Node 1 

 

Figure 5-11: Second Iteration for Node 2 
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Figure 5-12: Second Iteration for Node 3 
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Figure 5-13: Second Iteration for Node 4 

 

Figure 5-14: Second Iteration for Node 5 

 

 

Figure 5-15: Second Iteration for Node 6 

5.4.5 New Topology 

The topology resulting from the re-computation of the spanning trees is checked and 

it is ensured that none of the nodes use more links than they can accommodate. It is 

seen in Table 5-12 that the resulting topography is physically feasible. 

Nodes 1 2 3 4 5 6 
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Interfaces 3 3 3 3 3 3 

Links 2 3 3 2 3 3 

Removal 0 0 0 0 0 0 

  Table 5-12: Interface and Link Comparison after Second Iteration 

The final network topography is shown in Figure 5-16. 

 

Figure 5-16: Final Topology 

The proposed algorithm is thus seen to have resulted in a feasible solution to the 

problem of limited interface networks. 
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5.5 Algorithm 

This section provides a more concise description of the algorithm detailed in the 

previous few sections. 

1. A cost matrix is used for determining the Link State between two nodes. A hop 

matrix is used for determining the nexthop for every communication link 

required. 

2. Initially, all the entries in the cost matrix are set to infinity (or a very high value). 

3. For every pair of connected nodes, the respective entries in the cost matrix are set 

to the cost of the links between the nodes. In the hop matrix, the entry for each of 

these nodes is set to the connected node. 

4. Copies of the original cost and hop matrices are maintained. 

5. In each iteration of the cost matrix computation, it is attempted to insert another 

adjacent node in between every pair of nodes, the attempt succeeding if the new 

cost is lesser than the earlier cost to network between those nodes. In such cases, 

the hop matrix entry is updated to reflect the new nexthop for this communication 

link. 

6. At the end of this exercise, the matrices will contain the best way to reach any 

pair of nodes in the network. 

7. A copy of the cost matrix is made at this point. 

8. ‘Ln’ denotes the maximum number of links possible for each node ‘n’. In order to 

have at most ‘Ln’ connected neighbors for each node, the spanning tree is checked 

for the number of links to each node. If there are greater than ‘Ln’ links 

originating from node ‘n’, the least used links are removed from the original cost 

and hop matrices. 
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9. The computation of the spanning trees with the modified topology is done again 

using the original matrices with the removed links. 

10. The new cost matrix generated is compared with the copy made in step 7, 

generated from the previous iteration. If the matrices are different, steps 7, 8 and 9 

are run again. 

This chapter provided a description of the routing algorithms used in the SBI 

Emulation System. The chapters up to this point have discussed the architecture and 

design of the emulation system. The next chapter provides test cases and results for 

validating the system. 
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6 Testing and Results 

The SBI Emulation System design and implementation needs to be validated for 

accuracy and correct behavior. Various scenarios can be created and fed into the 

Emulation System and the behavior analyzed and verified for correctness. A number 

of scenarios have been created and used to test the emulation system and the routing 

algorithm. A few of the test cases are tabulated here and the behavior of the emulation 

system described. 

6.1 Test Cases 

Two separate test scenarios have been developed to test the SBI Emulation System. 

�� Nine Node Polar Satellite Scenario 

�� Twenty Five Node Constellation Scenario 

The following sections describe the test cases in detail. 

6.1.1 Nine Node Scenario 

The Nine Node Scenario uses eight equally spaced satellites in polar orbit and a 

ground station facility residing at the North Pole. The satellites each have four 

interfaces and the facility has two interfaces. There are instruments on board two of 

the satellites. The scenario start time is set to 06:30:00 05/01/2002. This scenario was 

designed so that every satellite node has access to two of its nearest neighbor 

satellites on either side at all times. The following table provides details regarding the 

satellite propagation: 
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Rly1 9578 0 90 0 0 09/01/2001 

01:00:00
90.32 

Rly2 9578 0 90 0 0 09/01/2001 

01:19:26
90.32 

Rly3 9578 0 90 0 0 09/01/2001 

01:38:52
90.32 

Rly4 9578 0 90 0 0 09/01/2001 

01:58:18
90.32 

Rly5 9578 0 90 0 0 09/01/2001 

02:17:44
90.32 

Rly6 9578 0 90 0 0 09/01/2001 

02:37:10
90.32 

Rly7 9578 0 90 0 0 09/01/2001 

02:56:36
90.32 

Rly8 9578 0 90 0 0 09/01/2001 

03:16:02
90.32 

Table 6-1: Satellite Propagation – Nine Node Scenario 

6.1.2 Twenty Five Node Scenario 

The Twenty Five Node Scenario uses eight equally spaced satellites in three orbits 

and a facility residing at Goddard. The three orbits used for the satellites are: 

�� Eight satellites propagate equally spaced in an equatorial orbit 

�� Eight satellites propagate in an orbit at 60 degrees inclination with the equator. 
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�� Eight satellites propagate in a second orbit also at 60 degrees inclination with the 

equator. 

This particular topology was chosen to have maximum coverage over the Earth as 

possible with less than 30 satellites. Table 6-2 provides details of the satellite orbits. 

The RAAN and the Epoch Time vary from the base values with increments as shown 

in the table. 
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Orbit

1 
7878 0 0 0 0 

09/01/2001 

00:00:00 

00 14 30

115.98

Orbit

2 
7878 0 60 0 

162.46 

+ 3.63 

09/01/2001 

00:10:00 

+ 00:14:30

115.98

Orbit

3 
7878 0 60 0 

341.20 

+ 3.63 

09/01/2001 

00:05:00 

+ 00:14:30

115.98

Table 6-2: Satellite Propagation – Twenty Five Node Scenario 
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6.2 Results 

This section presents the results for the tests conducted on the SBI Emulation System. 

A screenshot of the execution of the Emulation System is shown.  

 

Figure 6-1: SBI Screen Shot 

In anti-clockwise order from the top left-hand corner are the Network Status Window, 

the Instrument Status Window and the 2-Dimensional and 3-Dimensional STK 

Windows. 
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6.2.1 Nine-Node Scenario 

This section details the results obtained from the Nine Node Scenario. A comparison 

is presented of the routing event times with different route update times used. This 

serves to illustrate the number of events that occur in a scenario. Routing Tables are 

provided from one of the nodes as an illustration of the route changes in the 

emulation. Images from the emulation are also presented to illustrate the route 

changes. 

6.2.1.1 Route Update Time Comparison 

The following tables show a comparison between a high and a low event round off 

time. The scenario described in Table 6-3 has a lowest time difference of 200 seconds 

between events and the scenario in Table 6-4 has a lowest time difference of 10 

seconds between events. The times of the first few connections to the NorthPole 

facility are tabulated. 

It is seen from the tables that with a 10-second round off, events occur as often as 100 

seconds apart in this scenario. This problem becomes more acute as the number of 

nodes in the scenario increases. 

In the Nine-Node Scenario, each satellite has a 41:49 minute window to the ground 

station facility. Figures 6-2, 6-3 and 6-4 showcase the route changes during the first 

few minutes of the emulation. Satellites Rly2 and Rly3 have access to the facility at 

the beginning. When the first event occurs, satellite Rly4 gets access in place of Rly2 

and when the second event occurs, satellite Rly5 gets access in place of Rly3. 

 

 Start Time Event Time Stop Time Event Time 
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Rly1 08:13:01 08:13:10 08:54:50 08:54:40 

Rly2 
06:30:00 

08:32:27 

Initial 

08:32:20 

06:38:47 

09:14:16 

06:38:40 

09:14:10 

Rly3 
06:30:00 

08:51:53 

Initial 

08:52:00 

06:58:13 

09:33:42 

06:58:00 

09:33:30 

Rly4 06:35:50 06:36:00 07:17:39 07:17:30 

Rly5 06:55:16 06:55:20 07:37:05 07:37:00 

Rly6 07:14:42 07:14:50 07:56:31 07:56:20 

Rly7 07:34:08 07:34:10 08:15:57 08:14:50 

Rly8 07:53:34 07:53:40 08:35:23 08:35:10 

Table 6-3: Event Times with 10 second Minimum Interval 

 

 Start Time Event Time Stop Time Event Time 

Rly1 08:13:01 08:13:20 08:54:50 08:53:20 

Rly2 
06:30:00 

08:32:27 

Initial 

08:33:20 

06:38:47 

09:14:16 

06:36:40 

09:13:20 

Rly3 
06:30:00 

08:51:53 

Initial 

08:53:20 

06:58:13 

09:33:42 

06:56:40 

09:33:20 

Rly4 06:35:50 06:36:40 07:17:39 07:16:40 
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Rly5 06:55:16 06:56:40 07:37:05 07:36:40 

Rly6 07:14:42 07:16:40 07:56:31 07:53:20 

Rly7 07:34:08 07:36:40 08:15:57 08:13:20 

Rly8 07:53:34 07:56:40 08:35:23 08:33:20 

Table 6-4: Event Times with 200 second Minimum Interval 

 

The route update time needs to be tweaked according to the scenario complexity to be 

able to generate the longest possible access times while reducing the prospect of 

excessive event occurrences. 

Table 6-5 presents a comparison of access times between a facility and a satellite at 

various altitudes. 

Altitude (km) Access Time (min) 

500 11 

800 15 

1000 17 

1500 23 

2000 28 

3000 39 

5000 62 

10000 208 
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Table 6-5: Comparison of access times with satellite altitude 

This shows that a satellite in LEO orbit (usually approx. 800 km) has about 15 min. of 

access time to a ground station facility. Choosing a very high route update time can 

cause small access intervals to get totally blacked out, whereas choosing very low 

route update times can result in excessive number of route changes in this interval. 

Therefore, a balance needs to be achieved where a few route changes occur and every 

satellite gets the maximum possible time of access to a ground station. 

The results presented in the next two sections have been generated with tests using a 

200-second route update interval. 
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6.2.1.2 Routes at NorthPole Facility 

The node to IP address translation for the Nine Node Scenario tested is given in Table 

6-5. Tables 6-6, 6-7 and 6-8 provide the routes for the NorthPole facility at the initial 

stage and after the first and second route updates respectively. 

 
Data Network 

IP Addresses 

Data Termination 

Interface 

NorthPole 10.67.12.1-2 10.67.199.12 

Rly1 10.67.9.1-4 10.67.199.9 

Rly2 10.67.8.1-4 10.67.199.8 

Rly3 10.67.6.1-4 10.67.199.6 

Rly4 10.67.10.1-4 10.67.199.10 

Rly5 10.67.5.1-4 10.67.199.5 

Rly6 10.67.11.1-4 10.67.199.11 

Rly7 10.67.3.1-4 10.67.199.3 

Rly8 10.67.7.1-4 10.67.199.7 

Table 6-6: Node to Address Translation - Nine Node Scenario 

Route Snapshot taken at 06:32:00 

Destination Node Gateway Node 

10.67.6.2 Rly3 10.67.12.1 NorthPole 
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10.67.199.11 Rly6 10.67.6.2 Rly3 

10.67.199.10 Rly4 10.67.6.2 Rly3 

10.67.8.3 Rly2 10.67.12.2 NorthPole 

10.67.199.9 Rly1 10.67.8.3 Rly2 

10.67.10.2 Rly4 10.67.6.2 Rly3 

10.67.199.8 Rly2 10.67.8.3 Rly2 

10.67.199.7 Rly8 10.67.8.3 Rly2 

10.67.9.4 Rly1 10.67.8.3 Rly2 

10.67.199.6 Rly3 10.67.6.2 Rly3 

10.67.5.4 Rly5 10.67.6.2 Rly3 

10.67.199.5 Rly5 10.67.6.2 Rly3 

10.67.3.4 Rly7 10.67.8.3 Rly2 

10.67.7.2 Rly8 10.67.8.3 Rly2 

10.67.199.3 Rly7 10.67.8.3 Rly2 

10.67.11.3 Rly6 10.67.6.2 Rly3 

Table 6-7: Routes at NorthPole facility - 1 

Route Snapshot taken at 06:48:00 

Destination Node Gateway Node 

10.67.8.1 Rly2 10.67.6.2 Rly3 
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10.67.10.1 Rly4 10.67.12.1 NorthPole 

10.67.6.2 Rly3 10.67.12.2 NorthPole 

10.67.199.11 Rly6 10.67.10.1 Rly4 

10.67.199.10 Rly4 10.67.10.1 Rly4 

10.67.199.9 Rly1 10.67.6.2 Rly3 

10.67.199.8 Rly2 10.67.6.2 Rly3 

10.67.199.7 Rly8 10.67.6.2 Rly3 

10.67.199.6 Rly3 10.67.6.2 Rly3 

10.67.5.4 Rly5 10.67.6.2 Rly3 

10.67.7.4 Rly3 10.67.6.2 Rly3 

10.67.199.5 Rly5 10.67.6.2 Rly3 

10.67.3.4 Rly7 10.67.6.2 Rly3 

10.67.11.1 Rly6 10.67.10.1 Rly4 

10.67.199.3 Rly7 10.67.6.2 Rly3 

10.67.9.2 Rly1 10.67.6.2 Rly3 

Table 6-8: Routes at NorthPole facility - 2 

Route Snapshot taken at 07:00:00 

Destination Node Gateway Node 

10.67.10.4 Rly4 10.67.12.2 NorthPole 
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10.67.6.2 Rly3 10.67.10.4 Rly4 

10.67.199.11 Rly6 10.67.5.2 Rly5 

10.67.199.10 Rly4 10.67.10.4 Rly4 

10.67.8.3 Rly2 10.67.10.4 Rly4 

10.67.199.9 Rly1 10.67.10.4 Rly4 

10.67.199.8 Rly2 10.67.10.4 Rly4 

10.67.199.7 Rly8 10.67.5.2 Rly5 

10.67.9.4 Rly1 10.67.10.4 Rly4 

10.67.199.6 Rly3 10.67.10.4 Rly4 

10.67.199.5 Rly5 10.67.5.2 Rly5 

10.67.3.4 Rly7 10.67.5.2 Rly5 

10.67.5.2 Rly5 10.67.12.1 NorthPole 

10.67.199.3 Rly7 10.67.5.2 Rly5 

10.67.11.3 Rly6 10.67.5.2 Rly5 

10.67.7.1 Rly8 10.67.5.2 Rly5 

Table 6-9: Routes at NorthPole facility – 3 

From the tables, it is seen that the nodes Rly2 and Rly3 have access to the facility at 

the initial stage, and Rly4 replaces Rly2 after the first route update and Rly5 replaces 

Rly3 after the second route update. This is also seen in the Figures 6-2, 6-3 and 6-4, 

which are snapshots of the 3-D and 2-D windows of the SBI output. 
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6.2.1.3 Route Snapshots 

The following figures provide the three-dimensional and a projection view of the 

routes created during the emulation run. Figure 6-2 shows the initial routes. 
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Figure 6-2: Initial Topology – Nine Node Scenario 

The topology after the first route updates is shown in Figure 6-3. This event occurred 

at 06:36:40AM. 

 

Figure 6-3: Topology after First Update 
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The topology after the second update is shown in Figure 6-4. This event occurred at 

06:56:40AM. 
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Figure 6-4: Topology after Second Update 

6.2.2 Twenty Five-Node Scenario 

The initial routing configuration is shown in Figure 6-5.  
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Figure 6-5: Initial Topology - Twenty Five Node Scenario 

The topology after the first route updates is shown in Figure 6-6. This event occurred 
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at 00:13:20AM. 

 

Figure 6-6: Topology after First Update 

The topology after the third route updates is shown in Figure 6-7. This event occurred 
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at 00:20:00AM. 

 

Figure 6-7: Topology after Second Update 

The Figures 6-5, 6-6 and 6-7 provided a glimpse of the route changes that occur in the 

Twenty Five Node Scenario. In Figure 6-5 and 6-6, the node OneTwenty_7 has 

access to the ground station facility at Goddard. In the next route change in Figure 6-

7, the node OneTwenty_8 has gained access to the facility. Various other changes in 

the topology can also be viewed in the figures. 

 

This chapter provided the results obtained from testing the SBI Emulation System. 

Snapshots were presented of the emulation and route changes were illustrated. The 

next chapter offers concluding remarks for this thesis and presents suggestions for 

future work. 
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7 Conclusion 

The design and implementation of the architecture for the Space Based Internet 

Emulation System has been described and evaluated in this document. This chapter 

presents the conclusions reached from the design and evaluation and the scope for 

future work. 

7.1 Concluding Remarks 

The architecture and design for a Space Based Internet Emulation System has been 

successfully implemented and evaluated. The design has been found to be physically 

feasible. The Emulation Manager forms a controlling and monitoring entity for the 

system. The centralized architecture for the routing and scheduling tasks has been 

presented, designed and implemented. Various testing scenarios have been proposed 

and employed to evaluate the working of the system. The emulation system has been 

found to be an effective means of evaluating the workings of a Space Based Internet 

in the real world. 

7.2 Future Work 

There are a number of methods for enhancing the working of the SBI Emulation 

System. A few of the improvements that can be envisaged for the emulation system 

are outlined here. 

�� Provision for higher number of nodes: In an emulation system, scalability is often 

a constraint due to the requirements of large amount of hardware. Provisioning 

multiple SBI nodes on single hardware units can greatly increase the scalability of 

the system. 
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�� Advanced routing algorithms: The topology algorithm presented in this thesis 

only serves to validate the system. Advanced algorithms taking into account 

bandwidth, multiple routes and other considerations need to be experimented 

with. 

�� Route Distribution: Route distribution in the current system is through the 

Management Network. A more efficient and realistic method of distribution 

would involve the Data Network. Steps need to be taken in order to implement 

this feature. 

�� Complex Scenarios: Complex scenarios need to be created and tested in order to 

fully validate the SBI Emulation System. 

The work on the architecture for the Space Based Internet Emulation System is by no 

means done. What has been covered in this thesis is merely a beginning. 
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Appendix I Satellite Orbital Propagation 

This Chapter provides an overview of the different terms and definitions involved in 

satellite orbital propagation [23][24][25]. The parameters required for propagating a 

satellite in its orbit are explained in some detail. 

Satellite propagators are mathematical models of satellite orbits. A number of orbit 

propagators are currently in use like the two-body propagation model, the J2 

perturbation and the MSGP4 models. The SBI Emulation System uses the simple 

Two-Body propagation model for SBI satellite propagation. 

The two-body propagator takes into account only the gravitational pull on the satellite 

due to the Earth. This propagator defines the following parameters: 

�� Apogee: The point in the satellite’s orbit where it is farthest from the Earth. 

�� Perigee: The point in the satellite’s orbit where it is nearest to the Earth. 

�� Semi-major axis: This represents the altitude of the satellite from the center of the 

Earth. In the case of non-circular orbits, the semi-major axis is defined to be: 

(Rapogee + Rperigee) 

          a =  --------------------- 

2 

where Rapogee and Rperigee represent the distance from the center of the Earth to the 

apogee and perigee points of the satellite respectively. 

�� Eccentricity: This is a value between 0 and 1, which represents the elliptical shape 

of the orbit. If the eccentricity is 0, the orbit is a circle. 

�� Inclination: The inclination of a satellite is given by the angle that the satellite 

orbit makes with the equator. The inclination varies between 0 and 180 degrees. 
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�� Line of Nodes: The intersecting line between the orbital plane and the equatorial 

plane is called the line of nodes. 

�� Argument of Perigee: The angle between the line of nodes and the major axis of 

the orbital ellipse is called the Argument of Perigee. 

�� Ascending Node: The Line of Nodes intersects the Earth at two points. The point 

where the satellite crosses the Earth from south to north is called the Ascending 

Node. 

�� Vernal Equinox: The Vernal Equinox is the Ascending Node of the Sun caused by 

the Earth’s orbit, i.e., the point on the Earth’s equator where the Sun crosses from 

south to north. The Right Ascension angle at this point is defined to be zero. 

�� Right Ascension of Ascending Node (RAAN): The RAAN is used to orient the 

orbital plane in space along with the inclination parameter. The RAAN represents 

the angle measured at the center of the Earth between the vernal equinox and the 

ascending node for the satellite. In other words, the RAAN is the angle at the 

center of the Earth where the Sun crosses the Equator from south to north and 

where the satellite crosses the Equator from south to north. 

�� Epoch Time: The Epoch time is the time when the orbit of a satellite is specified. 
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Appendix II XML Schema 

�� The SBI Emulation System uses the XML Schema [15][16] interface for 

validating the XML input file. The schema defines the valid entries in the input 

file. The schema used in the SBI Emulation System is reproduced here: 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'> 

<xs:element name="seqEntries"> 

 <xs:complexType> 

  <xs:sequence> 

   <xs:element ref="Entry" minOccurs='1' 

maxOccurs='unbounded'/> 

  </xs:sequence> 

 </xs:complexType> 

</xs:element> 

<xs:element name="Entry"> 

 <!-- Sequence of entries for describing the scenario and the 

node types --> 

 <xs:complexType> 

  <xs:choice> 

   <xs:element name="Scenario" type="ScenarioType"/> 

   <xs:element name="Satellite" type="SatelliteType" 

minOccurs='1' maxOccurs='unbounded'/> 
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   <xs:element name="Facility" type="FacilityType" 

minOccurs='1' maxOccurs='unbounded'/> 

  </xs:choice> 

 </xs:complexType> 

</xs:element> 

 <xs:complexType name="ScenarioType"> 

 <!-- Scenario configuration --> 

  <xs:sequence> 

     <xs:element name="StartTime" type="xs:dateTime"/> 

     <xs:element name="StopTime" type="xs:dateTime"/> 

  </xs:sequence> 

  <xs:attribute name="Id" type="xs:positiveInteger" 

use="required"/> 

  <xs:attribute name="Name" type="xs:string" use="required"/> 

 </xs:complexType> 

 

 <xs:simpleType name="IPAddressType"> 

 <!-- Format of an IP address for syntax checking --> 

  <xs:restriction base="xs:string"> 

   <xs:pattern value="(((([0-9]){1,3})\.){3})([0-9]){1,3}"/> 

  </xs:restriction> 

 </xs:simpleType> 
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 <xs:simpleType name="DataTypeType"> 

 <!-- The types of data scheduling possible --> 

   <xs:restriction base="xs:string"> 

    <xs:enumeration value="iceOnly"/> 

    <xs:enumeration value="waterOnly"/> 

    <xs:enumeration value="vegLandOnly"/> 

    <xs:enumeration value="aridLandOnly"/> 

    <xs:enumeration value="landWater"/> 

    <xs:enumeration value="landIce"/> 

    <xs:enumeration value="waterIce"/> 

    <xs:enumeration value="landOnly"/> 

    <xs:enumeration value="iceDay"/> 

    <xs:enumeration value="waterDay"/> 

    <xs:enumeration value="vegLandDay"/> 

    <xs:enumeration value="aridLandDay"/> 

    <xs:enumeration value="landWaterDay"/> 

    <xs:enumeration value="landDay"/> 

    <xs:enumeration value="SunriseSunset"/> 

    <xs:enumeration value="allSurfaceDay"/> 

    <xs:enumeration value="allSurface"/> 
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   </xs:restriction> 

 </xs:simpleType> 

 

 <xs:complexType name="InstrumentType"> 

 <!-- The syntax for an Instrument --> 

  <xs:sequence> 

   <!-- "Dest" can be an IP address or the name of a node. --> 

   <xs:element name="Dest" type="xs:string"/> 

   <xs:element name="DestPort" type="xs:positiveInteger"/> 

   <xs:element name="DataType" type="DataTypeType"/> 

   <xs:element name="DataRate" type="xs:unsignedInt"/> 

  </xs:sequence> 

  <xs:attribute name="Id" type="xs:positiveInteger" 

use="required"/> 

  <xs:attribute name="Name" type="xs:string" use="required"/> 

 </xs:complexType> 

 

 <xs:complexType name="InterfaceType"> 

 <!-- The syntax for an Interface on a node --> 

  <xs:sequence> 

   <xs:element name="DataRate" type="xs:unsignedInt"/> 

  </xs:sequence> 
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  <xs:attribute name="Id" type="xs:positiveInteger" 

use="required"/> 

 </xs:complexType> 

 <xs:complexType name="SatelliteType"> 

 <!-- The syntax for a Satellite node --> 

 <!-- Contains the positional info, interface and instrument 

info --> 

  <xs:sequence> 

   <xs:element name="OpNode" type="xs:boolean" minOccurs='0'/> 

   <xs:element name="SemiMajorAxis" type="xs:float"/> 

   <xs:element name="Eccentricity" type="xs:float"/> 

   <xs:element name="Inclination" type="xs:float"/> 

   <xs:element name="ArgOfPerigee" type="xs:float"/> 

   <xs:element name="RAAN" type="xs:float"/> 

   <xs:element name="Epoch" type="xs:dateTime"/> 

   <xs:element name="OrbPeriod" type="xs:float"/> 

   <xs:element name="Interface" type="InterfaceType" 

minOccurs='1' maxOccurs='unbounded'/> 

   <xs:element name="Instrument" type="InstrumentType" 

minOccurs='0' maxOccurs='unbounded'/> 

  </xs:sequence> 

  <xs:attribute name="Id" type="xs:positiveInteger" 

use="required"/> 
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  <xs:attribute name="Name" type="xs:string" use="required"/> 

 </xs:complexType> 

 

 <xs:complexType name="FacilityType"> 

 <!-- The syntax for a Facility node --> 

 <!-- Contains the positional info and interface info --> 

  <xs:sequence> 

   <xs:element name="OpNode" type="xs:boolean" minOccurs='0'/> 

   <xs:element name="Latitude" type="xs:float"/> 

   <xs:element name="Longitude" type="xs:float"/> 

   <xs:element name="Interface" type="InterfaceType" 

minOccurs='1' maxOccurs='unbounded'/> 

  </xs:sequence> 

  <xs:attribute name="Id" type="xs:positiveInteger" 

use="required"/> 

  <xs:attribute name="Name" type="xs:string" use="required"/> 

 </xs:complexType> 

</xs:schema>  
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